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THE THREE DIMENSIONAL STRESS INTENSITY FACTOR
DUE TO THE MOTION OF A LOAD
ON THE FACES OF A CRACK

Jean-Claude Ramirez
Division of Engineering
Brown University
Providence, Rl 02912 USA

ABSTRACT

The dynamic stress intensity factor history for a half plane crack in an
otherwise unbounded elastic body, with the crack faces subjected to a
traction distribution consisting of a pair of point loads that move in a
direction perpendicular to the crack edge, is considered. The exact
expression for the mode | stress intensity factor as a function of time for
any point along the crack edge is obtained by extending a procedure recently
introduced by Freund {1} The method of solution is based on integral
transforms methods and the theory of analytic functions of a complex

variable. Some features of the solution are discussed and graphical results

Accesion For

for various point load speeds are presented. — /
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1. INTRODUCTION

A general procedure has been introduced by Freund [1] for determining
the stress intensity factor histories for a class of three dimensional
elastodynamic crack problems. As an illustration of the procedure, Freund
studied a half plane crack in an otherwise unbounded elastic solid, with the
crack faces subjected to a pair of line loads that are suddenly applied
along a line perpendicular to the crack front. Because the approach is
novel, its range of applicability has not yet been established. Here, the
extension of the procedure to situations with moving loads on the crack
faces is considered. This distribution consists of a pair of point loads that
suddenly begins to act at the edge of the crack, and moves at a constant
velocity along the crack faces in a direction perpendicular to the crack
edge. The corresponding two dimensional problem was studied by Ang [2].
A three dimensional problem that is related to the one in this paper is that
of a point load traveling on the surface of an elastic half space. This
problem was analyzed by Gakenheimer and Miklowitz (3], who considered all
point load speeds, i.e. subsonic, transonic and supersonic. For the purposes
of this paper, attention is restricted to subsonic point load speeds, that is,
the speed is less than the characteristic Rayleigh wave speed of the

material. The analysis for higher speeds offers no added mathematical
difficulty.

In section 2, the general formulation of the boundary value probiem is

presented for the three dimensional crack face tractions resulting in mode
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3:: I deformation. Section 3 describes the general approach lo solving the

T problem by means of transfom methods. In section 4, the formal solution
to the particular traction distribution is obtained by means of the

Wiener-Hopf decomposition method. In section S the dynamic stress

‘ intensity factor history is extracted by making use of the asymptotic

properties of transforms, the Cagniard-deHoop method, and the convolution

\ theorem for transforms. A discussion of the results is given in section 6.
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2. GENERAL FORMULATION

In vector notation the Navier equation governing the displacement vector

u for an isotropic elastic solid is written as

u = c2\V(V-u) - c2.Vx(Vxu) (2.1)

where ¢| and cq are the dilational and shear wave speeds, respectively. In

terms of the Lame constants A and p and the mass density p, the wave

speeds are given by
c? = (2u)/p , 25 = p/p. (2.2)

It is also useful to introduce the dilatational and shear slownesses a and b,

where a= 1/c; and b= 1/cg. Furthermore, the Rayleigh wave speed of the

elastic material is denoted by ¢, and its corresponding slowness by r.

A standard approach when solving (2.1) is to introduce the displacement

potentials ¢ and ¥ through the Helmholtz decomposition of the

displacement vectur, i.e.

u=Vy+Vxy , Vvy =0 (2.3)

The scalar potential @ is called the dilatational potential and the vector
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e potential Y is the shear potential. The divergence free requirement on the

shear potential is necessary in order to make the decomposition unique.
The advantage of this decomposition is that the potentials ¢ and ¥ satisfy

the uncoupled wave equations

.

$=c2 v | § = c2 V2. (2.4)

The linear differential equations (2.4) have the added advantage of lending
themselves to standard integral transform methods. The two potentials
2 are coupled through the boundary conditions that characterize the problem

to be described.

Figure 1. Geometrical configuration of the elastic solid.
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Consider the elastic body containing a half plane crack depicted in
Figure 1. A right handed rectangular coordinate system is introduced such
that the z axis coincides with the crack front, and the half plane crack

occupies the region y=0, x<0. Attention is restricted to applied tractions
of the form TU =%+ d_(xzt) on y=:0 where d_>0 corresponds to a tensile
traction. All other components of the imposed traction are zero. The

function O_ is prescribed for x<0 and is extended so that o_ = 0 in the

half range x >0. The minus subscript is used to denote a function that is
nonvanishing in the range x<0. Likewise, the plus subscript will be used
to tabel functions that are nonzero in the half range x>0, but are
identically zero for x<0. This notation is useful in problems like this one,
where the transforms of these "half functions” turn out to be analytic
functions of the transform parameter in lower (minus) and upper (plus) half

planes.

Due to the symmetry of the geometry and the applied traction, the

displacement fields satisfy the following conditions:

Uy (%,-4,Z,t) = uy(x,u,z,t)
uu(x,—g,z,t) = - ug(x,g,z,t) (2.5)

ux(x,-y,z,t) = u,(x,y,z,t).

Thus attention can be restricted to the upper half space y > O.

...........
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Furthermore, properties (2.5) imply that oxg(x,o.z.t) and ogz(x,o.z,t)

vanish for all z and t, and that UU(X.O.Z,t) = u_(x,z,t) where u_ represents

the unknown y component of the displacement on the crack faces for x < 0
and u_ = 0 in the half range X > 0. Hence, the complete set of boundary

conditions to ba satisfied by the stress field is

Ogg(x,o,z,t) = g_(x,z,t) + 0,(x.z.t)

-
= Gy (*.0.2.) = 0 (2.6)
p-. .
b~ .
r =
¢ Oyz(x.0.2.t) = 0
.
o uy(x,0,z,t) = u_(x,z,t)
-
for -0 < x,2 <00 and 0 < t. The function o, represents the unknown
normal component of stress c’gg onx>0,and o, =0 for x <0.
The initial conditions are that the material is stress free and at rest
'.‘ for t < 0. These are expressed in terms of the displacement potentials by
\ P(x.y,2,0) = 3 P(x.4,2.0) = ¥(x,4,2,0) = 3;¥(x,4,2,0) = 0 (2.7)
kX
for y > 0. Likewise, the boundary conditions (2.6) can be replaced by their
corresponding representations in terms of ¢ and ¥, which are
o
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AV29 + 200 { 3@ + 8,[8,9, - B,9,1) = o_ + 0,

28,9 + 3,189 - 8,951+ 3 [8,9 - ¥y 1 = 0
9P + 8%, - 0,9, = u_

for -0 < x,z<o0 and 0 < t. ¥, qu and ¥, are the rectangular cartesian

components of .
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3. TRANSFORMS

In order to solve the problem described by the partial differential
equations (2.4), the initial conditions (2.7), and the boundary conditions (2.8),
use is made of Laplace and Fourier transforms. First, the one-sided Laplace
transform is applied to the differential equations and the boundary
conditions, and the initial conditions are imposed. This Laplace transform in
time has the transform parameter s, and is denoted by a superposed hat. For

a function P(x,y,z,t) this transform is given by

P(x,y,2,8) = J: P(x.y.z.t) e”St gt. (3.1)

For the time being, s is taken to be real and large enough so as to be on the
right of the abscissa of convergence of the integral. The dependence on z
and x is then suppressed by applying a pair of two-sided Fourier
transforms. These transforms have the transform parameters i{s and is,
respectively. They are denoted, respectively, by the upper case symbol for

the function with a superposed hat, and the upper case symbol itself, to

wit,

$(x,y.L,s) = 1 ro P(x.y,2.s) eiSLZ dz
/2 (3.2)

0CuLe) = == [ Byt elot o

The introduction of the s parameter into the kernel of the transforms (3.2)

e R '.:_'A.__ e e e .

L




is for algebraic convenience; it takes care of a change of variables that

would otherwise be needed at a later point in the analysis.

Due to the wave propagation character of the solution, the strip of

analyticity of the Fourier transforms can be anticipated. Suppose that the

applied tractions are such that o_ vanishes for |z| > z;. Then, at any

given time t, the region of causality is confined to |z| < zy + t¢|. Thus

. -,
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by considering the elementary wave field ¢ = Hit+(z+zg)al +
Hlt-(z-zg)al , where H(-) is Heaviside’s unit function, and applying to it

LN the L_place transform, one obtains
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$=0(e"8(121-20)ay 35 | 2| 1 oo, (3.3)

This, in turn, implies that the Fourier transform & converges for the strip

| Im(C)|<a. Thus & defines an ana/ytic function of & in the strip of
convergence. Consequently, one can analytically continue ¢ to values of ¢,
that are not contained in the strip of convergence. At this point in the

analysis it is convenient to restrict { to this strip. The identity property

of analytic functions [4], allows one to restrict ¢ to the portion of the |

imaginary axis in the interval -a<im(f)<a, Re({)=0. The idea is to

Lararel c e S u od <
LI b
Cor A A

- perform the Wiener-Hopf factorization in the & plane only, keeping (
®:

confined to the strip of analyticity of &. At a Iater point in the analysis it
will be essential to analytically extend functions of { away from the

interval on the imaginary axis and outside the strip.




.....

The domain of convergence of the Fourier transform in x can also be

anticipated. Suppose that the applied tractions are such that along the

crack faces o is nonzero for indefinitely large values of x in the negative

direction. Then, in this region the integral & will converge provided that
Im(£)<0. On the other hand, by definition the applied tractions do not
extend along the positive x direction and thus, the region of causality does
not extend beyond a certain cylindrical wavefront ahead of the crack front.
To be precise, for x>0, the front is centered at the y axis and at any given
time t, has a radius zg+(x2+2z2)'72. Thus, by considering the elementary
wave field ¢ = H(t-(zo+ /%2 + z2)a) and applying to it the transforms
(3.1) and (3.2) it is found that the final integral converges if
{Im(£)})2-12<2a2. Therefore the Fourier integral ® defines an analytic
function in the strip - VT2 + a2 <Im(£)<0 in the £ plane, with C
restricted to -a<Im(f )<a, Re(l)=0.

The class of problems which is accessible by the solution procedure

outlined in the Introduction , is one in which o_(x,z,t) is restricted to

having a triple transform which has the separable form,

1 [® [ . . e
_Z;J-OO J_g_(x,z.s)els(ﬁx tz) dzdx = m T_(&,0) (3.49)

, where m is a real nurmber and £_(&,l) does not depend on s. The reason for

this will be more apparent in section S. The requirement (3.4) makes it

...........................................................
------------------

.......................

....................................
...................................
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possible to perform the final inversion of the dynamic stress intensity

4 i factor by means of the convolution formula for Laplace transforms.

The application of the transforms (3.1) and (3.2) to the partial
__ differential equations (2.4) reduces them to ordinary differential
5 equations,

320 32y

e —— -5%x?¢ =0 and —— - s2B2¥ = o (3.5)
s ay? oy?

k- where

= x=o(E)=/TZ+E2+a2 |, B=BL.E)=/TZ+E2+DZ  (3.6)

and a=1/c| . b=l/c5 are the dilatational and shear slowneses introduced

after (2.2). The complex & plane is cut along vaZ + £2 <|Im(&) | <o, Re(%)
=0 and vbZ+ 2 <{|Im(E)|<ee, Re(¥) = 0 so that Re(e) > 0 and Re(8) > 0

in the cut plane for each admissible value of {. With the & plane cut in this

fashion, equations of the type (3.5) have the solutions, bounded as y-eo to
"_ preclude waves coming in from remote regions,
o & )
.-"':" A nC) e(avc !
ot _ -5 A J
:‘:: - gM+2 e™d , ¥ = Sm+2 e Py (3.7) 1
o
e where ©={B(£.0).C(£,0).D(E.L)} .
Transforming the condition V-¢ =0 yields
on
I




..............

Y EB - ifC + LD = 0. (3.8)

It is also necessary to transform the boundary conditions (2.8), which will
yield four more equations. They are

N (b2 + 282 + 202)A + 2iLBB - 2iEBD = p~(=_+ £,)

. 2iccA - ELB - iLBC + (B2 + E2)D = 0 (3.9)
3 2itocA - (B2 + 12)B + iEBC + £LD = 0

R A - itB + iED = U_

, In reducing the equations to this form use is made of the fact that Acy™2 =

p(b2 - 2a?). Furthermore we have defined U_ and £, as

o M+ 1

i U-(£,0) = J J 0-(x.2.5)e15(8x*12) gzdx

" —%

&)

o 8L = — J o (%,2,5)e5Ex*L2) dzax .

.

The parameter s is absent, by construction, from the five eqations (3.8)

:" and (3.9). There are six unknown parameters, four constants of integration
8

e AB.C.D and two sectionally analytic fuctions U_ and Z,, but only five
equations to relate them. One can solve for the four constants of
n integration in terms of the two unknown sectionally analytic functions.

12
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The result is

A(E,0) = o 1(1 - 2B2D72)U_(E.L)

B(E.L) = -2itb 2U_(Z.0) (3.11)
CEL=0
D(E.C) = 2iEb~2U_(&,0).

Substituting for these functions into the first equation of (3.9) we obtain

one equation relating the two unknown functions,

- REDUED = £ @D * D (3.12)
b2ex

where

R(Z.L) = [b? + 282 + L)1 - 4(E2 + L) &,L)B(E,L). (3.13)

This is the modified Rayleigh wave function, that is, it corresponds to the
standard Rayleigh wave function, R(z), when {=0. It is a well established

fact [S] that the standard Rayleigh wave function, in a properly cut z plane,

has only two zeros, R(xir)=0 where r=1/c.. Thus, the modified Rayleigh

wave function in the properly cut complex & plane only has the two zeros

E=2ir, where 1 = JT2+r2,

Equation (3.12) is a standard Wiener~Hopf equation, and the essence of
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the Wiener-Hopf method is to solve for the two unknown sectionally

Sr

g -

e analytic functions U_ and £, from a single equation (3.12). The approach to

( be followed in section 4 is actually due to Jones [6]. Since £, is analytic

" in the half plane Im(£)>-/T%aZ , and U_ is analytic in the half plane

\ Im(£)<0, (3.12) holds in the strip -i/{%+a¢ <£<0. Furthermore,  is
restricted to the interval -a<Im(l)<a, Re(f)=0, so for a fixed value of {

(3.12) can be solved by factorization in the & plane alone.

14




4. FORMAL SOLUTION

At this point it is necessary to introduce the particlular applied
traction distribution. The present work is concerned with a pair of point
loads that suddenly begins to act at the edge of the crack x=y=z=0 and
moves in the negative x direction, i.e. perpendicular to the crack edge, at a

contant velocity v. Thus, we assume that

o_(x.z,t) = - P§(2)8(x+vt)  0<v<c, (4.1)

where §(-) is Dirac’s delta function. The amplitude P has physical
dimensions of force and P>0 corresponds to a traction that tends to

separate the crack faces.

Conical
headwave \\
<%

2

{— Dilatational
wavefront

Shear
wavefront

X

Figure 2. Traces in the x-z plane of the wavefronts resuiting from the

application of the tractions (4.1).
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Figure 3. Traces in the y-z plane of the wavefronts resulting from

the application of the tractions (4.1).

Crack

- faces Shear

- wavefront

‘! Figure 4. Traces in the x-y plane of the wavefronts resulting from

the application of the tractions (4.1).

'Q Figures 2, 3 and 4 indicate the leading wavefronts that result from the
-

;'::; application of the tractions (4.1). These wavefronts have been obtained by
extrapolation from experience with two dimensional problems in hyperbolic
" partial differential equations rather than by solving for the displacement
s 16

' @
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.........................................




potentials. The wavefronts include spherical dilatational and shear
wavefronts centered at the origin of coordinates (Fig. 2). There are also
two sets of headwaves that form cones with vertices where the spherical
dilatational front meets the z axis, and extend to circles of tangency with
the spherical shear wavefront. The traces of these cones which extend to
the crack faces, as well as ahead of the crack edge, are shown in Figure 2.
Furthermore, there are conical headwaves that intersect the dilatational
wavefronts on the surfaces y=:0 for x<0, and extend to circles of
tangency with the spherical shear wavefronts (Figs. 3 and 4). The
heac'vaves arise since the dilatational waves alone cannot satisfy the

fract.on free boundary conditions that exist at the crack faces.

Transforming (4.1) with (3.1) and (3.2), it is found that m=1 and that

iP 1
z-(£.0) = (4.2)
21y (L-ic)
where c=1/v is the point load slowness. Substituting for £_(&.0) in (3.12)

one obtains the Wiener-Hopf equation that corresponds to the problem with

traction loading (4.1),

N DUGED = —— — v 5.0 (4.7)
b2ex LU-(8.L C2ny (t-ic) M -~

Only some of the steps involved in the factorization of (4.3) in the &

plane will be shown below. To begin, let a2={2+a2 and note a is some

17




constant in the interval (0,a) since { is being held fixed in the interval

(-ia,ia). The function « can be factorized as,

o(&:8) = (E2+@2)/2 = [(£+ia)'72], (£ -ia)" 2] . (4.4)

The semicolon is used to emphasize the fact that { is being held fixed and
its influence in the factorization procedure is only parametric in nature.
The plus (minus) subscript is used to denote functions that are analytic in
the upper (lower) half plane Im(£)>-a (<0). The fact that the two planes

overlap is no coincidence. Indeed, for (3.12) or (4.3) to have useful

consequences there must be a common strip in which £, and U_ exist. In

problems of this sort, one /Agpes that o, and u_ are such that the inversion

paths of their Fourier transforms satisfy the above requirement, and

proceeds, verifying the initial assumption a posteriory.

In order to make further progress one must factorize the Rayleigh wave
function R(&;C). For this purpose it is most convenient to express R(E:L) in
terms of a function with neither zeroes nor poles and whose limiting value
as |&|1T e is unity ([6],pp.13-15). Such a function is easily constructed
from the asymptotic properties of the Rayleigh wave function and
knowledge of its roots. Specifically, one must make use of the results

that

R(Z:L) = 282(b2 - a2) + O(1) as |&| Teo (4.5)

e vl S e S S te Aia A B A R R e
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and R(Z;L) has two symmetric roots & = +ir , where r = JT2+r2, as
discussed at the end of section 3. The function needed is easily seen to be
R(E:L)

S(Eit) = ——— 4.6
€= = (4.6)

where x=2(b%-a?). The function S has the required properties of being
nonvanishing in the finite £ plane and being asymptotic to unity for large

vaiues of &£. In the Appendix it is shown that S(&:f) can be factorized as

S,(&:0)S_(&:0) where

S, (E.0) =
b
exijJ tan™! {4n2/(b?—n2)(112-a7) ndn } . @7
L Ja (b2-212)2 V2 (VL322 )

The functions S,(¢ ) and S_(&;) are analytic and nonzero in the half

planes Im(£)>-2a and Im(&)<a.

After some straight-forward manipulations, (4.3) can be rewritten as

px U_(&:C) iP
-— = |+ (& G (& 4.8
02 O(ED) e (Ei0) & C)] (&:0) (4.8)
where
19




(5 + ia)1”2
G.(&L) = — ) (4.9)
(L) (E+ir)s,.(&:0)

At this point the factorization is almost complete. It remains to

remove the pole in G,(&:;C) at £=ic. This is accomplished b1 observing that

G+(€.;C.) G+(EQC) - G+(iC§C) ] . [G+(ECQC) } . (4.10)
& - ic & - ic + a - ic -
Now the factorization is complete and relationship (4.8) may be

rewritten as

Ok ULEGD) P Gl(icl) P 164(8:0) - G4 (iG]
b2 G_(£;L) 2mv (&-ic) 27y (&-ic)

+ G (E0ZH(ED). (4.11)

The function on the left hand side of (4.11) is analytic in the half plane
Im(£)<0. The function on the right hand side is analytic in the half plane
Im(&)>-i/t%+a% . Since (4.11) holds in the strip where the domains of
analyticity of the two functions overlap, the functions are each analytic
continuations of the other. Together they define an entire function E(£)
(I6], p. 37) . The function E(£) is to be determined from the behaviour of
the functions U_ , £, and G, as |&| T o,

20
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_.\: For the class of fracture mechanics problems described in section 2, the
normal stress o, on the plane y=0 is expected to have the asymptotic
behavior
'.
s o.(xzt) ~ ki(t,2)//2mx  as xi0* (4.12)
- where k(t,z) is the dynamic stress intensity factor history at any point
along the crack front. This history will be determined explicitly in the
next section. In light of (4.12), &,(x.z,s) is also expected to be square
Ly
L root singular as x { 0° for any z. This result can be used in conjuction
with the Abelian theorem regarding asymptotic behaviour of Fourier
_' ‘ transforms [6] to determine the asymptotic properties of £,.(&:C), namely,
lim /2875 e 1T/ g (B:) = lim /X &,(x.2.5) . (4.13)
“ aToo x {0+
Since the right hand side of (4.13) is equal, by (4.12), to a function
Ol parametric in s and {, £,(&:L) = O(§ ~"172) as L Te. Furthermore, u_ is
b expected to vanish as x10” and |G,(&:0)| = O([&|-172) as |&] Teo.
. Therefore, both sides of (4.11) vanish as |&| Te. That is, E(f) » 0 as
|&] Te. Fim the preceding discussion it follows that E(£) is a bounded
function in the entire £ plane. According to Liouville’s theorem a bounded
.. entire function is a constant (4], and therefore E(Z£) must be identically
= 2!
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zero, i.e. E(£)=0. Equation (4.11) can now be solved for £, and U_, which

are found to be

P b2 G,(icL)G-(&:0)

U_(&:L) = - )
27V HX £ - ic
| 6. (i) (4.14)
L3¢
m(&) = - 2miv (&-ic) [G+(£:C) ) 1]

This completes the formal solution of the problem. In theory, the exact

solution to the problem is found by taking the triple inverse transforms of
(4.14).

22
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5. INVERSION

Unfortunately, an exact inversion of £, and U_ as given by (4.14) is not

evident. This section is concerned with the determination of the stress

intensity factor history, which is given by the asymptotic inversion of &,
with respect to £. As mentioned in section 4, the asymtotic behaviour of
£,(8:8) as |&]| T is intimately related to the behaviour of the double
transform 5,(x,0), of the normal stress o,(x,z,t) as x 1 0*. It follows from

(4.12) that the Laplace transform of the dynamic stress intensity factor

history ky(t,2) is simply

. Ki(s.2) = lim v/ 271% a.(%,2.9). (5.1)
‘ x10+

Thus, the double transform of k(t,z) is found from (4.13) and (4.14) to be

P (L2 a2) 172
Ki(s.L) = — J/7t/s : (5.2)
TV (c+(L2+r2)V21S5, (ic,L)

By construction, the function K(s,t) is analytic on the strip -ia<{ <ia.

° Since the Wiener-Hopf factorization has been completed and the limiting

process that resulted in Kl(s,C) has suppressed all dependence on the

variable &, there is no longer any need to restrict ¢ to this strip. For the

purposes of inverting this function it will be advantageous to extend the
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definition of the function to the entire { plane. It is this extended

function which is referred to as the Fourier transform of I?,(s,z). This

function can be made single valued by cutting the { plane along

a< |Im()] <oo, Re(L)=0 and along r < | Im(L)] <eo, Re(L)=0. This ensures

that the square roots have positive real parts. The function S,(ic,l) is

analytic over the entire { plane by virtue of a theorem pertaining to

analytic functions defined by integrals ([4], p. 92; [6], pp. 11-12).

The inverse Fourier transform of (5.2) is

o2 [ 7% e nyenistz (5.3)
ki(s,2) = —— Ki(s,)e™ dac 5.3
| = J-wico |

where (g is a real number between -a and a. It is hoped that the final

Laplace inversion of l€](s,z) can be done by means of the convolution

formula. Therefore, it will be advantageous to cast (5.3) in the form of a
one sided Laplace transform so that the inversion can be performed by
inspection. The required transformation can be achieved by suitably
deforming the Fourier inversion path into a branch line integral; this is a
trivial case of the Cagniard-deHoop technique. Consider the case of z>0.
For (5.3) to be a convergent integral when z>0, it is necessary that the
inversion contour lie in the lower half plane Im({)<0. Since the finite L
plane does not contain any singularities aside from the branch points at
= tia and { = tir, the original inversion path can be deformed into a new

contour as depicted in Figure S. This new contour consists of two quarter
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Figure 5. The complex § plane showing the singularities of kI(SS) and

the integration path for the evaluation of (5.3).

circles Ty and I, in the lower half plane, and a branch line path running

upward along the left hand side of the branch cut from -io up to the

branch point at £ = -ia, around the branch point, and finally running down
the right hand side of the branch towards -iec. That the original integral
in (5.3) is equivalent to the integral of the same argument along the new
path follows from Cauchy’s integral theorem. This theorem states that the
contour integral of a function which is analytic on and inside the contour
is identically zero {4]. The contribution of the integral along the arcs at

infinity Ty and Tp as || e vanishes by Jordan's Lemma [4]. Thus (5.3)

reduces to a branch line integral. Exploiting the fact that K(s,-T) = K(s,0),

where the bar denotes complex conjugation, the branch line integral can be

expressed, after an elementary change of variables, as

25




-2
N
? Ki(s,2) = poy z- V5172 sj e ST Im{F(+0+in/z)}dn (5.4)
f:::f az

where
. 4 F(c) /C+(c2+a2)f/2 (5 5)
= [c+(82+r2)172)5,(ict) '
to In (S5.4), F(L) is evaluated on the right hand side of the branch cut. The
s-multiplied Laplace transform in (5.4) can be expressed as the Laplace
S transform of a derivative, i.e.
P ) J2P 0
¢ \(s.2) = 21 s-wj o1 Lim{FGosin/z)ldn  (5.5)
b There is no endpoint contribution from m =az in (5.5), because F(+0+ia) is
a real quantity. The inversion of (5.5) is now obvious because |€1(s,z) is
_ seen to be the product of two transforms. Therefore k,(t,z) is the
convolution integral of the inverses of the two transforms,
” €2 220 o [P ko) @ - 56)
S5 kit,2z) = z- I — Im{F(+0+il t-az 5.6
A ! 372y a OC t-(z
‘ for 2>0, and k,(t,-2) = kl(t,z). The expression for k| in (5.6) apparently
'_ cannot be reduced further in terms of elementary functions. Some of the
; properties of the real integral (5.6) along with an interpretation of the
- results are discussed in the next section.
L 26
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6. CONCLUSION

Even though the dynamic stress intensity factor history (S5.6) cannot be
evaluated in terms of elementary functions it can be evaluated numerically
and some of its salient features can be obtained analytically. Figures 6, 7,
8 and 9 show the results of the numerical integration of the integral (5.6)

for the values of the ratio of the point load velocity to the Rayleigh wave
speed of 0.8, 0.6, 0.4, and 0.2 for a Poisson ratio of ¥=0.3 (¢/c,.=2.02).

The time scale has been non-dimensionalized so that ©=1 corresponds to
the arrival of the dilatational wave at the observation position z along the
crack front. The dynamic stress intensity factor has been normalized by

premultiplyng (5.6) by P-1(;tz)372.

Following the sudden application of the point loads, a point z along the
crack edge is at rest until the arrival of the dilatational front. This front
is compressive in nature and the crack faces respond to it by initially
trying to close together. This is reflected by the stress intensity factor
being negative initially. The initial jump in the dynamic stress intensity
factor, which can be seen in the graphs, is a verifiable feature of the
solution of this particular three dimensional loading distribution. For the
case of a pair of line loads acting perpendicular to the crack edge, i.e the
convolution of the traction distribution (4.1) for v=0, Freund [1] found that
the dynamic stress intensity factor started from zero and gradually became

negative. By taking the limit as t/z L a* in (5.6) the jump is found to be
g )
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i1 4ac
lim ki(t,2) (2372 p-t = - — (6.1)
+ 0

t/z 4 a 4 [c+/r?-a7]s.(ic,0%+ia)

The dynamic stress intensity factor becomes increasingly negative

until the arrival of the Rayleigh waves at ©=2.02 when it becomes
logarithmically singular. Between T=1 and v=2.02, k,(t,z) also exhibits a
disturbance coinciding with the arrival of the shear front at t=1.88. This

0 mild discontinuity in the slope of k(t,2) is due to a change in the form of

= the function S, as the branch point located at the shear wave slowness is

.- crossed. After the passage of the Rayleigh waves the crack faces begin to

open, the stress intensity factor increases until reaching a maximum, and

thereafter decaying very gradually towards its limiting value k(e,2)=0.

This completes the analysis of the three dimensional stress intensity

factor history for the case of a pair of moving point loads on the faces of

,_ a crack. The solution (5.6) to the problem described by the traction

" distribution (4.1) is the fundamentai solution to the class of problems

! involving traction distributions moving perpendicular to the crack edge. In

“ this paper the range of applicability of the procedure introduced by Freund

. (1] has been successfully extended to this class of problems. Other

.. situations, such as moving loads along a direction inclined to the crack

'f edge, can be examined following the same methodoliogy used in this paper.
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Figure 6. The normalized stress intensity factor k(L,z) (nzy3/2 p-1
versus t/az for the case of ¢c/r = 0.8.
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Figure 7. The normalized stress intensity factor k(1,2) (nzy3/2 p~!
versus t/az for the case of ¢/r = 0.6.
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Figure 8. The normalized stress intensity factor k,(t.z) (11z)3/2 p-1

versus t/az for the case of c/r = 0.4.
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versus {/az for the case of ¢/r = 0.2,
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APPENDIX

In this appendix the factorization of the function S(Z:f) as defined by
(4.6) is carried out. As mentioned in section 4, the function S(&;t) has no
zeros or poles in the & plane cut along a<|Im(&)| <b , Re(§)=0.
Furthermore, the function S(&:;L) has the desired property of being
asymptotic to unity as |&| Teo. These properties enable one to factorize

S(%:t) into the product S,(&:0)S_(5:t) by a well known decomposition

technique ([6], pp. 15-17). Specifically, one considers the Cauchy integral
representation for InS(&;L), that is, one represents In S(&;C) by the

following contour integral

L )
INS(E:L) = - §r lns(b’.C)_Xﬂ_%_. (at)

The counterciockwise contour T is depicted in Figure 10. By expanding the
contour T to infinity, making use of the asymptotic behaviour of S(&:L), an

equivalent representation of (A1) is obtained. The integral (A1) around the
contour I' at infinity is equivalent to two clockwise contours I'y and I'_

around the branch cuts as shown in Figure 10, so that

INS(ET) = 1 S,(8:) + In S(E:0) = —- §r++rlns(x.c) 4. (A2)

-

Thus, the functions S,(&;L) and S_(&;L) are given by
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S+(&:0) exp[ o §I"1 InS(%;L) d_?.f:._]. (A3)
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Figure 10. The complex ¥* plane showing the singularities of S(f;%) and

the integration path for the evalution of (A.1).

As can be seen from (A3) and Figure 10, the functions S,(&:L) and S_(&:0)

are analytic and nonzerc in the half planes Im(£)>-a and Im(£) <a,

respectively. It remains to evaluate the contour integrals.

For illustrative purposes consider the function S,(&;C). Along the right

hand side of T,, i.e. -b <Im(&)<-a , Re(&)=0", the Rayleigh wave function

(3.13) has the explicit form

R(O*+ i) = (D2+02-2%¥2)2+4i(L2-32)[(¥2-22)(b2-¥2))!"2 (A4)
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where ¥=Im(£). Along the left hand side of T',, R(E:l) is given by the

complex conjugate of (A4). From (4.6)

INS(E;L) = INR(E;L) - In[2(b2-32)(T +£2)) (AS)

and therefore S,(£:L) can be expressed as,

1 (-D | ) .
In S,(5:2) = —J _ _nR(:+0+i¥) d¥ - ——j _ InR(-0+i%) d¥ (A6)
270 a 1% - 21 J-2a 1% -
-b
=—‘—J - n[R(+O+ib’)/R(-O+i?§)] a3 (A7)
2770 a m’~2

b
J tan-'[4((2-?52)[(?52-5?)('52-?52)1'/2] d¥ . (A8)
(b2+72-2%2)2 i+

The function S_(&:L) is treated similarly. One further change of variables

n=(¥2-12)172 reduces (A8) to the form (4.7).
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